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Survival Models for Familial Aggregation of
Cancer
by Wendy Mack,* Bryan Langholz,* and Duncan C.
Thomast

It has recently been shown that the relative risks of the order of 2 to 4 that are frequently found for
cancer among relatives of affected cases are unlikely to be explainable by shared environmental risk
factors. Classical methods of epidemiological analysis are not well suited to such analysis because they
assume that the outcomes of each individual are independent. Classical methods of genetic analysis, on
the other hand, are limited in their handling of environmental factors and variable ages of onset. The
recent development of random effects models for survival analysis, however, appears to bridge this gap.
Specifically, a proportional hazards model is postulated for the effects of measured covariates and of one
or more components of frailty that are unmeasured but assumed to have some common distribution and
known covariance structure within each family. From these assumptions, the posterior expectation of the
hazard for each individual can be derived, given the covariate values and the observed and expected disease
history of the family. These are then treated as known in a standard partial likelihood analysis; this is
essentially a form of expectation-maximization algorithm. However, this does not provide a valid estimate
of the covariance matrix because it fails to take account of the variability in the estimates of the frailties;
an alternative approach using the imputation-posterior algorithm is suggested. This paper describes ex-
tensions of this approach to multivariate frailty distributions, modifications for application to pedigree
and case-control studies, some simulation results, and applications to studies of breast cancer in twins
and of lung cancer in relation to family smoking habits.

Introduction
Studies of familial aggregation of chronic disease pose

considerable complexities for the data analyst. These
include a) the correlation in outcomes resulting from
the sharing of unmeasured genetic and/or environmen-
tal influences within families; b) the different degrees
ofsharing expected between different types ofrelatives;
c) the censored survival time nature of the response
variable, requiring the use of appropriate survival
analysis techniques; and d) the need to consider multiple
measured covariates (usually environmental but possi-
bly including genetic markers); and e) the possibility of
gene-environment interactions. Classical segregation
and path analysis methods in genetics are designed spe-
cifically to address the first two issues, but are not well-
suited to the latter three. Standard logistic and Cox
regression techniques in epidemiology are well suited
to dealing with the third and fourth issues but assume
independent responses across individuals, and so they
cannot be directly applied to the first two. The recent
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development of multivariate survival models (1,2) offers
considerable promise to bridge the gap between these
two approaches.

Basically the approach postulates the existence of an
unobserved variable or variables (frailty) that take on
the same or correlated values within a family and reflect
unmeasured genetic and environmental influences on
disease risk. Conditional on this frailty, the outcome is
assumed to be independent between family members
and to follow a proportional hazards model. In the analy-
sis the unknown frailties are replaced by their posterior
expectations, given the covariate values, periods of ob-
servation, outcomes of their family members, and cur-
rent model parameters. These estimates are used as if
they were known in a standard partial likelihood; this
is essentially a form of expectation-maximization (EM)
algorithm (3). In the next section we review this ap-
proach for the case where all family members are as-
sumed to have the same frailty, and we discuss an ap-
proach to the problem of variance estimation using the
imputation-posterior (IP) algorithm (4). The section
"Multivariate Frailty Models" discusses some ap-
proaches to the case ofcorrelated frailties. Our approach
is closely related to that of Bonney (5), who proposes a
logistic regression model for dichotomous outcomes us-
ing a regressive approach by ordering the subjects in
the data set in such a way that each subject depends
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only on those preceding him or her in the data. A like-
lihood is constructed by assuming that the probability
of each subject's outcome is given by a logistic function
of his own observed covariates and unobserved geno-
type and then summing over all possible sets of geno-
types, weighted by their prior probabilities under a par-
ticular inheritance model. Our approach generalizes this
model to survival time data and does not require any
ordering of the data.
The posterior estimate of the frailty is essentially a

comparison of the observed number of cases in the fam-
ily to an expected number based on the family members'
ages and times at risk and their covariate values. The
naturalness of this estimate can be seen by some cal-
culations of familial relative risk (i.e., the risk of disease
in relatives of an affected family member divided by
that in relatives of unaffected family members) based
on simple genetic models of single gene inheritance (6).
These familial relative risks increase markedly with the
number of affected family members but decrease only
slowly with the number of unaffected members (Table
1). This occurs because if the disease is rare, each af-
fected member considerably increases the posterior
probability that the gene is present in the family,
whereas each unaffected member only slightly reduces
it, since the absence ofa rare disease is not a particularly
informative observation. An important corollary of this
observation is that genetic relative risks (i.e., the risk
of disease given the gene is present divided by that
given the gene is absent) as large as 100 can easily
produce familial relative risks ofonly 2 or 3. Conversely,
since environmental risks this large are seldom ob-
served, familial relative risks of 2 or 3 are difficult to
explain by shared risk factors (7).
The method just described applies to the analysis of

cohort data. A commonly used technique in genetics
involves the ascertainment of affected probands and in-
vestigation of the disease history of their family mem-
bers. This design is closely related to the case-control
study in epidemiology in which affected cases are as-
certained and matched with unaffected and unrelated
controls, and their family histories are compared. These
designs require some adaptation of the frailty analysis
approach, which is discussed in the section "Modifica-
tions for Proband and Case-Control Designs."
We hoped that the use of multivariate frailty models

Table 1. Familial relative risks by number of affected and total
siblings.'

Number of siblings
Number of diseased siblings 1 2 3 4 5

1 1.20 1.17 1.16 1.16 1.16
2 1.33 1.31 1.31 1.30
3 1.45 1.44 1.43
4 1.56 1.55
5 1.66

a Familial relative risks computed for a recessive single gene model,
assuming a genetic relative risk of 10, a population proportion of
genetically susceptible individuals of 0.01, and a disease probability
of 0.00001 in nongenetically susceptible individuals.

of the third section would allow the effects of unmea-
sured genotype and unmeasured environment to be sep-
arated. The "Simulation Results" section describes
some simulation studies suggesting that, although the
tendency toward familial aggregation can be easily de-
tected by these methods, separation of separate com-
ponents of frailty can be difficult. Some applications to
a cohort study of breast cancer in twins and a case-
control study of lung cancer in relation to smoking and
disease histories are described in "Applications."

Univariate Frailty Models for
Familial Cohort Data
The univariate frailty model for proportional hazards

can be written as

(t,zijjEi) = Xo(t) exp(_ij'p + E{)

where i = 1, . . ., I indicates the family, j = 1 .... mi
the members of the family X and N = Imi. Note that
in this model, the unobserved frailties e,i are assumed
to be the same for all members of the family; in the
third section we consider extensions in which the Ei are
mi-vectors having some known covariance structure. By
integrating over possible values of the unknown frailty,
Clayton and Cuzick (2) and Self and Prentice (1) show
that if the Ei are assumed to have a log-gamma distri-
bution with zero mean and variance -y, then the posterior
expectation of the hazard is given by

X(t,zij) = Xo(t) exp(zjj'P) o [exp(ei)] (la)

where

& [exp(Ei)] = 1 + EyDi1 + -y Ej (lb)

Di is the observed number of cases in family i and Ei
is the expected number of cases, given their ages at
risk and covariate values, under the null hypothesis of
no shared frailty, i.e.,

J7n t

Ei(t) = 2 Yik(U) Xo(u) exp(ik'fE) du
k=l1J

(lc)

where Yik(u) is an indicator function for whether subject
ik is at risk at time u. If one wished to use a standard
Cox regression program, Eq. (lb) could be approxi-
mated by exp[-y(Di- Ei)] using a Taylor expansion of
the posterior expectation of S[exp(ei)].

Fitting the model is easily accomplished by forrn of
EM algorithm:

a) Given trial estimates of Xo(t), the Ei(t) are com-
puted using Eq. (lc) and the partial likelihood
based on the general relative risk model (la) and
(lb) is maximized with respect to model parame-
ters B and y;

b) New estimates of Xo(t) are then computed using
the Cox-Breslow-Oakes estimator (8),
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k = (t ti) n(tk)

(tk tk-1) 1ij Yij(t) exp(zi a) [exp(Ei)]

where n(tk) is the number of failures at tk and t E
(tk-l,tk).
We found that convergence was improved if the itera-
tion in step a was taken to convergence before a new
set of baseline rates was estimated in step b; usually,
only two or three cycles were then needed to obtain
overall convergence.

Self and Prentice (1) estimate the frailties conditional
on F,, the history of events, covariate values, and cen-
soring up to time t, in order to avoid having the hazard
at time t depend on events in the future. However, this
approach fails to produce a true partial likelihood due
to the dependence of the frailty estimates on -y, which
is estimated from the entire data set including events
in the future. It also has the undesirable result that the
estimate of the frailty for each family varies as infor-
mation about the family accumulates, even though the
true frailty is assumed to be constant over time; thus,
less information is used to predict the frailty effect for
the early failures than for the later failures. For this
reason, Clayton and Cuzick (2) prefer to base their
frailty estimate on the lifetime history of the entire
family, which should produce a more efficient estimator.

Self and Prentice do not give a variance estimator for
i and y, although Clayton and Cuzick do. The problem
with naive use ofthe information matrix from the partial
likelihood is that it assumes the covariates, including Ei,
are known. The obvious correction would be to compute
derivatives of the log likelihood with respect to 13 and
y including terms for the dependence of Ei on 1, 'y and
Xo. But the Xo in turn depend on 13, -y, and i, thus leading
f-o an infinite-recursion, which seems intractable. A more
promising approach would be to use the full survival
likelihood and invert the full information matrix with
respect to 13, y, and Xo. Representing the full survival
likelihood a-s

LF(0,Ao iE) = Hij [Xo(tij) exp(zij1 + Ei)]Dii
expE - AO(tij) exp(z,' + si)],

a potential aproach would be to use the full expected
likelihood, L , obtained by integrating out the un-
known frailties,

LFE = Hi f Hj Lj(§,0o,Ei) P(E |y) d(Ei )
-Hi {[H Xo(tj) ii exp(zij 'Di)]

,1 -i. - l/-y

x Ao(tij) exp(z, @') + -

x F(Di. + / yl/y r(lIy)}.

A more attractive approach is to use the IP algorithm
(4), which provides a Monte Carlo estimate of the entire
posterior distribution of model parameters. Essentially
one would proceed as follows. Given the current esti-
mates of 1, y, and X0, one would draw a single random

sample of Ei for each family from their posterior distri-
butions, which is also gamma with parameters 1/y +
Di and (1/y + Ei) -'. Then treating these as known, one
would draw a single random sample of Xo(t), 1, and y
from their respective posterior distributions, g-lven the
current estimates of the other parameters. The process
continues indefinitely, and after a sufficient number of
iterations, it settles down to produce successive random
samples from the posterior distributions of each of the
parameters. Details of this approach are given in Ap-
pendix 1.

Multivariate Frailty Models
The assumption of a common frailty E for all members

of the family is simplistic in that family members share
different degrees of genetic and environmental influ-
ences. This suggests that one might consider replacing
Ei by an mi-vector, whose elements have some covari-
ance structure determined by their relationships to each
other. The log-gamma distribution is not easily gener-
alized to multivariate settings, but a multivariate nor-
mal distribution provides a close approximation. By fit-
ting the first two derivatives of the posterior
distribution of Ei, Mack (9) has developed approximate
expressions for the posterior expectation of fi which can
be used as described above. For example, suppose there
are two components of frailty, one a genetic effect and
one an environmental effect; let sijp (p = 1,2) denote
these two unobserved variables and let Pijkp denote the
correlation in Ei.p between members j and k of family i
(e.g., 1 for the genetic factor for monozygotic twins, 1/2
for first degree relatives, 1/4 for second degree relatives,
etc.; c1 for the environmental factor between spouses,
c2 between sibs, C3 between parents and offspring, etc.).
Then we would estimate Fijp by

mi

2 (Dik - E k) Pijkp
k = 1

As before, we take the regression coefficient for frailty
to be unity and estimate the variance of each component
of the frailty distribution and any unknown parameters
in their correlation matrices.

Unfortunately, for simple family structures, esti-
mates of the variance and correlation in frailty are vir-
tually colinear. Thus, a strong familial aggregation can
be equally well explained either by a large variance with
a small correlation or by a small variance with a high
correlation (Fig. 1). Thus, it would be necessary to ar-
bitrarily fix at least one of the unknown correlations and
hope to estimate the other correlations relative to it,
leaving the variance free; with sufficiently rich family
structures this may be feasible, although the simula-
tions described later are not encouraging.
We have also considered a two-point frailty distri-

bution based on single gene models ofinheritance. These
are expressed in terms of two parameters, the gene
frequency and the genetic relative risk, with the asso-
ciation between family members determined by Men-
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FIGURE 1. Likelihood surface for bivariate frailty.

delian laws. Detailed expressions are given elsewhere
(9) and summarized in Appendix 2. Unfortunately, this
approach also seems to suffer from similar problems of
colinearity: there is no obvious way to simultaneously
estimate both the gene frequency and the genetic rel-
ative risk. It appears that, without other information
to estimate the gene frequency, it would be difficult to
estimate the two parameters simultaneously, although
complex family structures may be more informative.

Again, it is tempting to consider an approach using
the IP algorithm. For each individual, one would draw
a random Eij from its posterior distribution given the
subject's disease status Dij, his expected incidence E%j
[Eq. (ic) except for the summation over family mem-
bers], and the current values of Eik for his family mem-
bers. This is simplified by knowing the conditional in-
dependence structure of the family: for example, for a
genetic model, Eij is dependent only on the Eik of his or
her parents, spouse, and offspring. The rest of the it-
eration proceeds as described above. Details are given
in Appendix 1.

Modifications for Proband and
Case-Control Designs

In pedigree analysis, cases of a disease are ascer-
tained from some disease registry (these are called the
probands). All their family members are identified and
their disease status determined (10). Thus, probands
have the disease with probability one by virtue of the
sampling scheme. The standard approach in genetic
analysis is to exclude these subjects and determine

whether the occurrence of disease in the rest of the
family is consistent with Mendelian laws given the pres-
ence of the affected proband. We propose to use the
same principle in fitting the frailty model. Thus, the
cohort would consist only of the nonprobands, who
would be viewed as a birth cohort. However, the pro-
bands would be counted as observed events in Eq. (lb)
for estimating the frailties of the nonprobands, calcu-
lating their Eu by applying the estimated baseline rates
from the cohort of nonprobands to their time from birth
to diagnosis.

This can be viewed as a purely internal analysis,
which does not take advantage of the information that
the cohort may have a higher incidence rate than the
population at large. Such a higher incidence rate would
presumably be a reflection ofthe same phenomenon that
leads to clustering within families and an analysis that
takes advantage of that information should be more
powerful, particularly if the number of nonproband
cases in the family is small. Assuming a set ofpopulation
rates were available and thought to be applicable to the
cohort (i.e., comparable ascertainment of cases within
the family and in the population and no selection biases
other than as a result of sampling by probands), then
in principle one could use the population rates to derive
an alternative estimate of the baseline rates. The dif-
ficulty comes in adjusting the population rates for cov-
ariates, because their distributions in the population
may be different from those in the cohort. If the disease
is rare and we are prepared to assume that the covariate
distribution in the nonaffected members of the family
is representative of the population, then we can ap-
proximately estimate the baseline rates as

Xo(t) = A(t) / [exp(z2ij) Dij = 0]
where X(t) is the population rate. An important advan-
tage of the case-control design is that such assumptions
are unnecessary as the controls essentially provide an
estimator of the baseline rates.

In the typical case-control study, cases of the disease
of interest are ascertained and matched with one or
more controls drawn from the population at risk. For
the purpose of this discussion, the sample of controls
might be drawn from population lists, by canvassing the
neighborhood ofeach case, by random digit dialing, from
lists of the cases' friends, from hospitalized or dead pa-
tients with other diseases, but not from relatives of the
cases. In the standard approach, a family history cov-
ariate, such as the presence or absence of a positive
family history, the number of affected family members,
or the number affected weighted by their degree of
relatedness, is computed for each case and control and
used in standard conditional logistic regression anal-
yses. This is inefficient and potentially biased because
it does not take into account the number of events ex-
pected in each family. For example, if cases tend to
have larger families (perhaps through some socioeco-
nomic correlate), then they will be more likely to have
positive family histories even if there is no shared ge-
netic or environmental risk. It is natural, therefore, to
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compute a family history covariate as the difference of
observed and expected events. The problem then arises
as to how the expected events are to be computed.
One approach would be to treat all the family mem-

bers other than the sampled cases and controls them-
selves as a birth cohort and to analyze these data in the
same way as just described for the proband design. A
simpler approach would be to analyze only the cases and
controls using conditional logistic regression, treating
the frailty estimate as a known covariate. For this pur-
pose, baseline rates could be estimated either from the
cohort of family members or from population rates as
previously described, and the cases and controls them-
selves would not contribute to the frailty estimation
(otherwise the case families would have higher expected
frailties than the control families under the null hy-
pothesis).
To fully exploit the power of the case-control design,

one needs to have covariate values, not just for the cases
and controls but also for all their family members. This
can be quite difficult to obtain, particularly for those
who have died. A reasonable approximation may be to
impute values for missing covariate information by ran-
domly sampling from the posterior distribution of cov-
ariate values given a) the covariate value of their
matched case or control, b) the assumed value of the
intra-family correlation of the covariate, c) the age-spe-
cific population distribution of covariate values, d)
whether they and their matched case or control were
affected or not, and e), the current fitted value of the
regression coefficient for the covariate. If covariate val-
ues are known for some family members, this infor-
mation will allow the intra-family correlation to be es-
timated. Detailed examples of such imputation rules are
described elsewhere (9). For example, suppose for un-
affected subjects at age t, the zij were normally dis-
tributed with mean ,u(t), variance cr2(t) and correlation
p. Then for affected subjects, the marginal distribution
of zu would also be normal with mean ,u(t) + P'o-2(t) and
variance of k2(t) (11). Then conditional on zio, Du, and
Dio, zu is normally distributed with mean

,u(t) + p3u2(t)Di0 + P[zi0 - ,u(t) - Oa2(t)Dio]
and variance u2(t)(1 _ p2), where D is an indicator for
whether the subject is affected or not.

Simulation Results
In order to assess the feasibility of disentangling ge-

netic and environmental influences using multivariate
frailty models, we carried out a number of simulations.
In most of these simulations, 25 four-generation cohorts
of family members were generated; in relation to a sub-
ject in the third generation, the possible relatives would
include siblings, parents, grandparents, offspring,
aunts/uncles, and nieces/nephews; other family mem-
bers might also have spouse and in-law relations. Each
simulation comprised a total of 418 to 471 members.
Two measured environmental covariates (one continu-
ous and one dichotomous) and two multivariate normally
distributed frailties (one for genetic and one for envi-
ronmental influences, with a known covariance struc-
tures that were chosen to be as different as possible)
were randomly assigned to each family member. Ex-
ponentially distributed failure times, conditional on the
measured and unmeasured covariates, were generated
for the cause of interest as well as for competing causes.
Parameter values were adjusted to produce from 27 to
47 cases. Each simulation was analyzed using the
method of Self and Prentice including various combi-
nations of genetic and environmental frailty estimates.
Because of the amount of computing required for the
fitting, it was not feasible to replicate the simulations,
so we are unable to describe the test size or power, but
the consistency of our findings across simulations sug-
gests that the results are unlikely to be due to chance.

Table 2 summarizes the results of a portion of the
simulations we conducted. In simulations 1 through 4,
a highly significant familial aggregation was detected,
but in none were we able to fit both a genetic and an
environmental component simultaneously. Indeed, each
time we tried, the estimate of the environmental vari-

Table 2. Simulation results.

Simulated frailty variances LR chi-square tests (df)a
Simulation Genetic Environmental Genetic variance Environmental variance

1 5 1 20.92 (1) 14.70 (1)
2 3 1 24.54(1) 16.88(1)
3 1 3 20.50 (1) 17.50 (1)
4 0 3 3.72 (1) 7.06 (1)
5 3 1 7.44(1) 5.00 (1)
6 (See Table 3 for results)

Covariate Genetic
effect variance

(Wald's) (Wald's)

7 43.39 (1)
2.66 (1)

45.06 (1) 0.67 (1)
a Likelihood ratio (LR) tests for frailty components fitting each component separately, adjusted only for measured covariates.
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ance was negative and the likelihood for the genetic-
only model was always slightly larger than for the en-
vironment-only model (even for simulation 3 in which
the true environmental variance was larger than the
genetic variance).

Simulations 2 and 5 are identical except that simu-
lation 2 includes both first- and second-degree relatives
(25 families, 469 total subjects, 46 cases), whereas sim-
ulation 5 is restricted to first-degree relatives (50 fam-
ilies, 418 total subjects, 34 cases). This was done to
assess the relative value of trying to obtain larger ped-
igrees versus a larger number of small pedigrees. In-
tuitively, one would imagine that the relative inform-
ativeness of the two designs would be approximately
proportional to the number of cases from multiple-case
families. In simulation 2, these numbered 40, whereas
in simulation 5 they numbered 24. Furthermore, the
average number of cases in families with more than one
case was 4.1 in simulation 2 but only 2.25 in simulation
5. The pattern of likelihood ratio statistics was very
similar between the two simulations, but the chi-square
values were about 3.3 times larger for simulation 2.
Given that the two simulations had roughly the same
total number of subjects, we would conclude that the
larger pedigrees were more infornative per subject;
even scaling the statistics by the number of cases, we
would also conclude that the larger pedigrees were more
informative per case (presumably owing to the larger
number of affected family members per case). However,
this conclusion is based on the assumption that the qual-
ity of the data on second degree relatives is as good as
that of the first degree relatives, which is unlikely to
be true in practice.

Simulation 2 was also used to compare the results of
the frailty analysis with what might be expected, using
simpler family history covariates in standard methods
of analysis (Table 3). Somewhat to our surprise, fitting
the simulated model using frailty methods did not pro-
duce more significant results than a simple binary cov-
ariate (presence or absence of other affected family
members). Also treating this binary covariate, or the
number of affected family members, or the observed
minus expected number as fixed covariates (i.e., using
all times but excluding the index subject) consistently
produced larger chi squares than treating the same cov-
ariates as time-dependent (i.e., using only events prior
to the current time, but including the index subject); to

Table 3. Fixed versus time-dependent family history covariates.

Likelihood ratio, Likelihood ratio,
fixed (df) time-dependent (df)

Simulation 2
Binary 27.04 (1) 18.42 (1)
Number observed 20.20 (1) 13.02 (1)
Observed - expected 20.98 (1) 14.16 (1)

Simulation 6 (null case)
Binary 0.44 (1) 0.20 (1)
Number observed 0.62 (1) 0.23 (1)
Observed - expected 0.02 (1) 0.002 (1)

assess whether this might be because of some liberality
in the procedure under the null hypothesis, simulation
6 was generated with the true frailty variance being
zero. All chi squares in this case were trivial.

Simulation 7 addressed the case of a measured cov-
ariate being intermediate on a causal path from un-
measured genotype to disease (e.g., hormones as me-
diators of a genetic effect for breast cancer). As
expected, the addition of the measured covariate con-
siderably reduced the estimate of the genetic variance,
but addition of the genetic frailty did not affect the
measured covariate effect.

Finally, in simulation 8 we considered a design that
ought to be optimal for separating genetic and environ-
mental influences: monozygotic (MZ) and dizygotic (DZ)
twins reared together and apart. Even in this case, the
two frailty components could not be fitted simultane-
ously.

Applications
Swedish Cohort Study of Breast Cancer in
Twins
The details of this application of the Self and Prentice

model for univariate frailty are described elsewhere
(12). Basically, a cohort of 11581 female twin pairs was
assembled from the Swedish registry oftwin births from
1886 to 1958, consisting of all those for whom both mem-
bers responded to a questionnaire in 1961 (if born before
1925) or 1971 (if born after 1925) and for whom zygosity
could be determined. This was then linked with the
Swedish cancer registry that was created in 1958 to
identify cancer cases and with the national death regis-
try to assess vital status (13).
To illustrate the methods, we constructed a sample

of the cohort consisting of all disease concordant pairs,
a random 10% sample of discordant pairs, and a random
1% sample of nondiseased pairs. Because both the ob-
served and expected number ofdisease concordant pairs
are overestimated by the same factor, these overesti-
mates will cancel in computing relative risks. Results
of these analyses are presented in Table 4.

In the absence of measured covariates, a significant
frailty variance was found with an estimate of 1.37 (SE
= 0.75). This estimate was reduced only slightly by

Table 4. Swedish twin frailty analysis.

LR chi-square
Parameter Estimate SE (df)
Variance of frailty

distribution (y)
N - E (all twins)

(MZ twins)
N - E

(DZ twins)

1.37 0.75 4.95 (1)
0.70 0.26
0.98 0.39

0.55 0.31

6.59 (1)

7.64 (2)

N - E *zyga 1.02 0.35 7.61 (1)
aZygosity coded 1 for monozygosity (MZ); 1/2 for dizygosity (DZ).
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adjustment for birth cohort, cigarette smoking, and rel-
ative weight. (It would have been desirable to have
more relevant covariates for breast cancer, but the
study was not designed with this disease as its primary
focus, and the relevant questions were not asked.)
The approximate frailty covariate, observed minus

expected cases, produced an estimate of 0.70 for all
twins, 0.98 for MZ and 0.55 for DZ twins. The best fit
was obtained by taking observed minus expected cases
weighted by 1 for MZ and 1/2 for DZ twins. This can be
seen as an approximation to the bivariate genetic frailty
model.
There was a significant interaction between attained

age and this genetic frailty covariate (X21 = 5.44), such
that the frailty effect was stronger at younger ages.
This is consistent with the suggestion that the genetic
effect is strongest for premenopausal breast cancer.

Case-Control Study of Adenocarcinoma of
the Lung and Familial Smoking
A population-based case-control study of adenocar-

cinoma in Los Angeles females was done to assess risk
factors, including personal and passive smoking and
family history. Details ofthe study design and the major
findings can be found in the publication by Wu et al.
(14). In particular, a highly significant effect of a family
history of lung cancer was found, even after adjusting
for personal smoking and other risk factors. In our
analysis, we sought to determine whether some of this
familial relative risk could be explained by correlation
of family members' smoking habits.
For the analyses ofpassive smoking effects, each case

and control was asked questions about the smoking hab-
its of her parents, siblings, spouse, and other cohabi-
tants. We also knew which of the subjects' first-degree
relatives had had lung cancer and if so, whether or not
they smoked. Finally, we knew how many brothers and
sisters the subject had. Because of the design of the
questionnaire, however, we did not know the lifetime
smoking histories for the subjects' parents (only their
status during the subjects' childhood and at diagnosis
if they had lung cancer) nor which of the sibs smoked.
Using the information that we did have on each family,
we therefore tried to impute values for the unknown
smoking histories to arrive at a random decision as to
whether each family member smoked and if so, his age
at starting and quitting and average number of ciga-
rettes per day. This imputation applied the age-specific
distributions of variables for cases and controls to af-
fected and unaffected subjects, respectively, in the
spirt of the section "Modifications for Proband and
Case-Control Designs." The various decision rules are
described elsewhere (9).
The analysis is based on the conditional likelihood for

the cases and their matched controls, taking as a family
history covariate the expectation of the frailty given the
lifetime covariate, disease, and censoring histories of
the family members. (We have not attempted a cohort-
style analysis because of the large size of the resulting

Table 5. Lung cancer frailty analysis.

LR chi-square
Parameter Estimate SE (df)
Initial unadjusted frailty 2.49 1.05 22.66 (1)

variance

Frailty variance adjusted 1.99 0.94 14.38 (1)
for personal smoking:

Baseline rates estimated
by average cohort rates;
Ei not incorporating
smoking covariate

Frailty variance adjusted 1.59 0.78 11.82 (1)
for personal smoking:

Baseline rates adjusted
for smoking; Ei
incorporating smoking
covariate

cohort.) In calculating this frailty estimate, the baseline
hazards were initially estimated from a lifetable analysis
of the cohort of family members (excluding the index
cases and controls) adjusted only for measured covar-
iates, and then a single cycle of the two step process
that was described in the second section was done.
The frailty variance was initially estimated at 2.49

(LR X21 = 22.66) with no smoking effects in the model
(Table 5). Addition of personal smoking reduced this
estimate to 1.99 (LR X 1 = 14.38); to obtain this esti-
mate, the average rates for the entire cohort were used
as XO(t) and the smoking covariate was not used in es-
timating the Ei terms in the frailty. In the next itera-
tion, the smoking-adjusted baseline rates and family
members' smoking habits were used to obtain smoking-
adjusted Ei and Ei, the resulting variance estimated
reduced to 1.59 on the first iteration, but was still highly
significant (LR X21 = 11.82). Thus, we would conclude
that the familial aggregation of lung cancer was only
partially explained by familial aggregation of smoking.
Although this conclusion can only be tentative in view
of the probable high degree of misclassification of family
members' smoking habits, we designed the imputation
rules in such a way as to maximize the smoking x lung
cancer association, thereby giving familial smoking the
largest possible opportunity for explaining the associ-
ation.

Discussion
The methods we have described provide a means of

analyzing survival data for families, taking into account
their interrelationships and any measured covariates.
The latter could include environmental exposures, ge-
netic markers, or variables on a causal pathway from
genotype to outcome (such as hormones or reproductive
events in breast cancer). Thus, they appear to address
the major limitations of classical genetic and epidemi-
ologic methods, as enumerated at the beginning. Nu-
merous details remain to be resolved, however, includ-
ing the development of a tractable variance estimator,
the identifiability of the multivariate models, and the
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validity of the proposals for applications to noncohort
designs. Although we have developed a feasible pro-
gram for the univariate frailty model (but not the cor-
rect variance estimator), it is highly computer-intensive
and the proposed extensions to multivariate frailty
models and the IP algorithm are likely to be even more
so. The simulations suggest that simple approximations
may perform quite well. Thus, the development of prac-
tical procedures and the study of the power to distin-
guish various alternatives remain high priorities.
The incorporation of genetic markers into such an

analysis will be addressed in a separate paper. Such
markers mij could simply be included as measured cov-
ariates in the models we have described above. How-
ever, an approach that would be more in the spirit of
linkage analysis (15) would assume thatm is informative
about Ei and that conditional on Eij, Dij is independent
of m. Assuming a logistic dependence of mij on sij, the
contribution of subject ij to the likelihood would be of
the form

fHij P(Dij Ej,zjij,Eij) P(mij Eij) P(ti) dEl .

This work was supported in part by National Cancer Institute grant
numbers CA42949 and CA14089. We are grateful to David Clayton
for many helpful suggestions and to Birgitta Floderus and Anna Wu
for making available the data that were used for illustration.

Appendix 1
Formulation of the IP Algorithm for
Frailty Models
For univariate gamma frailty models, one would pro-

ceed as follows:
Step 0. One could obtain initial estimates of Xo at ,B
- y = 0 by a simple Kaplan-Meier survival analysis on

the entire cohort, or better, by applying a Cox regres-
sion analysis to obtain the maximum likelihood estimate
(MLE) of 1 and Xo at y = 0. Better yet, one could use
the EM-algorithimi approach described in the text to
obtain the MLE of 1B, Xo, and -y.
Step 1. For each7?amiily, one would randomly sample

a single value of the frailty Ei from the posterior dis-
tribution of eei Fi 1, y, Xo for the current values of
these parameters. Assuming the prior distribution of
e'i is gamma with shape parameter 11y and scale param-
eter -y, then the posterior distribution of eEi is also
gamma with parameters Di + (1Iy) and [Ei + (l/y)] l
Thus, it suffices to randomly sample frailties from this
gamma distribution.
Step 2a. Now treating the Ei as known, one ran-

domly samples values of Xo(tk) = Xk4(0) for each failure
time tk from their posterior distributions given F, 1 and
E. Assuming Xk has a flat prior on [0,o01, then the prob-
ability density function (pdf) for Xk is given by the like-
lihood, Xk eXkSk dXk where Sk = ijRk exp(zi1j' + 'j).
Thus the cumulative distribution function (cd) is simply
e XkSk, so it suffices to draw a uniform [0,1] deviate F
and compute Xk as - InFISk.
Step 2b. Assuming a flat prior on RK for 13, the

posterior distribution of 1B given E and Xo is again given
by the likelihood function, whichcan be written as

InL(P) = Pl;j^_jDij - IijAo(tij) exp(zt>j'I + E).
This can be expanded in a Taylor series around the
current estimate of ,B to obtain

InL(P) = InL(-) + (p - ^)'A1 + (p - i)'A2(P - _

where A1 = IA^O(tii) z* exp(ziy'1_ + Ei) andA2 = Ao(tij)
0 zij exp(zi,'13 + C).

Thus, we can draw the next value of 1 from a multi-
variate normal distribution with mean , - A2 1A1 and
covariance matrix A2-1.
Step 2c. One ran=domly samples y from the posterior

distribution of

'y E = eC/Y /Yl/y F(l/y)
where C = -ei- i

Steps 1 and 2 are repeated and the simulated values
of i and j (after an initial run-in period if the process
is started at y = 0 rather than the MLE) are tabulated
as the joint posterior distribution.
For multivariate frailty models, steps 2a and 2b are

unchanged and steps 1 and 2c are revised according to
the form of the assumed prior distribution of Ei. For
example, for a polygenic inheritance model (omitting
the subscripts ij and letting eM, eF, es, eO denote re-
spectively the frailties of the mother, father, spouse,
and offspring m = 1, . . , Mij of subject ij), then the
prior distribution of Eij is N[Rij, o2ij] where

and
Aij = [EM + AF + Im (Aom A

=1 2

i'j : 1 + Mijl4
and a-2 is an unknown parameter assumed to be constant
for all subjects. Then the posterior density of ij is pro-
portional to

exp(EijDij - Eije'ij) N(Eij uij, iZj)
which can be approximated by a normal density with
mean + (Dij - Ei1)I& and variance iE/(1+ )
In step 1, one would therefore simply sample Eij from
these approximating normal distributions. In step 2c,
62 would be sampled from the posterior distribution of
o2 given the set of residuals E&j - [LiJ. Assuming a flat
prior for lnr, this has density E(&i -ij)2 (1 - Mt,/4)
/ XN_I Thus, one only computes this sum of squares and
divides it by a random chi square deviate.

Appendix 2
Two-Point Model for Frailty among Sibs
Let -y = gg, gG, and GG denote the possible genotypes,
wr the prevalence of allele G, and R', the relative risk
associated with genotype -y (1 of gg or gG and R for GG
in a recessive model; 1 for gg and R for gG and GG in
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a dominant model). We assume a proportional hazards
model of the form

A(t,z,y) = Xo(t)e'8RV.
For a pair of sibs, the prior probability of their joint
genotype i's given by Mendelian laws, e.g., Pggg -
(1 T4 PgG,gG==4(1- IT T, Pgg,GG =2(1 ITr) IT

etc. Then the marginal hazard is given by
A(t,z) = Xo(t) ea Iyly2P-y12(T0 R-YP(D1 zy,E1)

x P(D21 Y E2)

where P(DI-y,E) = (Ey)De-EY and E = Ao(t)ez.
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